运动,不是生活的全部,但是生活的最高处
                     运动,不是生活的全部,但是生活的最高处

区空间  校空间  我的主页    照片   好友[文章  收藏   评论   留言     最新阅读     推荐文章 

自行车/6 |  游泳/18 |  奥数教材(转载)/23 |  我的学生/3 |  生活与保健/3 |  个人收藏/12 |  跑步/6 |  力量训练/3 |  奥数竞赛(转载)/6 |  羽毛球/2 | 
本博客空间统计:   8545 篇文章   71 个评论


博主说明:教师
姓名:蓝忠诚
学校:罗芳小学
空间等级:53 >
现有积分:49450
距离下一等级:2550分
空间排名:教师类 第14

 
最新文章
 
关注教师心理健康,做快乐教师!
来看看你的打腿技术合格吗?
自由泳手臂交叉技术
自由泳提速,肩部水感特别重要
二 找规律填数
“圳”式长寿秘诀曝光!深圳宝安6位百岁老.
 
随机阅读
 
关注教师心理健康,做快乐教师!
来看看你的打腿技术合格吗?
黄静雯《认识图形》观课反思
自由泳手臂交叉技术
自由泳提速,肩部水感特别重要
二 找规律填数
 
推荐文章
 
参加2017年深圳市“体彩杯”成人游泳锦.
2014年夏游记录
2012-2013年度冬泳记录

9月
24 2020
 

练习12 解答


   作者:蓝忠诚 发表时间-22 :1:23  阅读( 6 )| 评论( 0 )

练习12 解答

  1.偶数。

  解:把棋盘上各点按黑白色间隔进行染色(图略)。马如从黑点出发,一步只能跳到白点,下一步再从白点跳到黑点,因此,从原始位置起相继经过:白、黑、白、黑……要想回到黑点,必须黑、白成对,即经过偶数步,回到原来的位置。

  2.不能。

  解:用白、黑相间的方法对方格进行染色(如图)。若满足题设要求的走法存在,必定从白色的展室走到黑色的展室,再从黑色的展室走到白色的展室,如此循环往复。现共有36间展室,从白色展室开始,最后应该是黑色展室。但右图中出口处的展室是白色的,矛盾。由此可以判定符合要求的走法不存在。

  3.不能。

  解:我们将 99×99的正方形中每个单位正方形方格染上黑色或白色,使每两个相邻的方格颜色不同,由于 99×99为奇数,两种颜色的方格数相差为1。而每一种纸片中,两种颜色的方格数相差数为0或3,如果它们能拼成一个大正方形,那么其中两种颜色之差必为3的倍数。矛盾!

  4.不能。

  解:如图,给8×8的方格棋盘涂上4种不同的颜色(用数字1,2,3,4表示)。显然标有1,2,3,4的小方格各有16个。每个1×4的长方形恰好盖住标有1,2,3,4的小方格各一个,但一个2×2的正方形只能盖住有三种数字的方格,故无法将每个方格盖住,即不可能有题目要求的覆盖。

  5.证:设五点为A,B,C,D,E。考虑从A点引出的四条线段:如果其中有三条是同色的,如AB,AC,AD同为红色,那么△BCD的三边中,若有一条是红色,则有一个三边同为红色的三角形;若三边都不是红色,则存在一个三边同为蓝色的三角形。这与已知条件是矛盾的。

  所以,从A点出发的四条线段,有两条是红色的,也有两条是蓝色的。当然,从其余四点引出的四条线段也恰有两条红色、两条蓝色,整个图中恰有五条红色线段和五条蓝色线段。

  下面只看红色线段,设从A点出发的两条是AB,AE。再考虑从B点出发的另一条红色线段,它不应是BE,否则就有一个三边同为红色的三角形。不妨设其为BD。再考虑从D点出发的另一条红色线段,它不应是DE,否则从C引出的两条红色线段就要与另一条红色线段围成一个红色三角形,故它是DC。最后一条红色线段显然是CE。这样就得到了一个红色的“圈”:

  A→B→D→C→E→A。

  同理,五条蓝线也构成一个“圈”。

  6.证:将红点赋值为0,蓝点赋值为1。再将小方格四顶点上的数的和称为这个小方格的值。若恰有三顶点同色,则该小方格的值为奇数,否则为偶数。在计算所有n2个小方格之值的和时,除A,B,C,D只计算一次外,其余各点都被计算了两次或四次。因为A,B,C,D四个点上的数之和是偶数,所以n2个小方格之值的和是偶数,从而这n2个值中有偶数个奇数。

  7.奇数。

  解:先对所有的小三角形的边赋值:边的两端点同色,该线段赋值为0,边的两端点不同色,该线段赋值为1。

  然后计算每个小三角形的三边赋值之和,有如下三种情况:

  (1)三个顶点都不同色的三角形,赋值和为3;

  (2)三个顶点中恰有两个顶点同色的三角形,赋值和为2;

  (3)三个顶点同色的三角形,赋值和为0。

  设所有三角形的边赋值总和为S,又设(1)(2)(3)三类小三角形的个数分别为a,b,c,于是有

  S=3a+2b+0c=3a+2b。(*)

  注意到在所有三角形的边赋值总和中,除了AB,BC,CA三条边外,都被计算了两次,故它们的赋值和是这些边赋值和的2倍,再加上△ABC的三边赋值和3,从而S是一个奇数,由(*)式知a是一个奇数,即三个顶点颜色都不同的三角形的个数是一个奇数。

  8.EFFGY。

  解:将A,B,C,D,E,F,G,X,Y,Z分别赋值为0,1,2,3,4,5,6,7,8,9,则

  CYZGB=28961,_XEFDA=74530。

  在28961与74530之间共有74530-28961-1=45568(个)数,词表中第45568个词是EFFGY。

 



上一篇文章:2020年第65跑    下一篇文章:阻力越大,我越泳感!送给泳不放弃一直坚持游泳的朋友



个人空间评论从2017年1月起采用实名制: